Дизельный двигатель: устройство системы питания

Параметры рейтинга производителей дизельных двигателей

При составлении рейтинга были использованы целый ряд отдельных параметров, из которых только шесть является субъективными, основанными на мнении ведущих экспертов рынка.

  • Качество сборки. В основе данного параметра: качество используемых комплектующих, суммарное КПД двигателя, экономичность, экологичность и некоторые другие технические характеристики.
  • Цена и качество. Имеется в виду средний показатель, построенный на основе анализа работы данных двигателей по сравнению с аналогами от других производителей.
  • Сервис и гарантия. Данный параметр учитывает качество и доступность ремонта, сервисного, технического облуживания, а также скорость реагирования на обращения потребителей.
  • Ассортимент. За основу данного параметра берется оценка линейки моделей производителя, с учетом его возможностей предоставлять наиболее оптимальные решения для каждого конкретного варианта применения.

Остальные параметры вычисляются путем сравнения усредненных характеристик продукции конкретного производителя с аналогичными характеристиками дизельных двигателей и сопутствующего  оборудования других брендов.

Устройство системы смазки автомобильного двигателя

Дизельный двигатель: устройство системы питания
Система смазки двигателя

Главной задачей системы смазки является обеспечение масляной пленки на соприкасающихся подвижных деталях автомобильного двигателя. Это позволяет снизить потери мощности и износ силового агрегата. Помимо этого, масло, подаваемое системой, используется в , гидронатяжителях и в механизмах регулирования фаз газораспределения. В общем устройстве автомобиля смазочная система интегрирована в конструкцию двигателя и состоит из следующих элементов:

  • Заливная горловина – через нее выполняется заливка или доливка масла.
  • Поддон картера – представляет собой нижнюю часть корпуса двигателя, наполненную маслом. Для правильной работы двигателя количество рабочей жидкости в поддоне должно быть на определенном уровне, что измеряется при помощи различных датчиков и приспособлений (щупа). В поддоне скапливаются не только излишки масла, стекающие из механизмов двигателя, но и загрязнения, образующиеся в процессе работы. Также на поддоне расположено сливное отверстие и пробка в виде болта с шайбой. При замене масла пробку необходимо заменить вместе с шайбой.
  • Маслозаборник – представляет собой конструкцию из патрубка, идущего от поддона к насосу, и фильтра грубой очистки.
  • – всасывает смазку при помощи маслозаборника из поддона и подает ее в систему. Он запускается и отключается одновременно с двигателем. В качестве привода может выступать коленвал, распредвал или вспомогательный приводной вал. Как правило, в автомобилях для перекачки масла применяются два типа насосов: шестеренчатые (более популярные) и роторные.
  • Масляный фильтр. Устанавливается на входе в насос и предназначен для очистки рабочей жидкости от стружки и нагара. Бывают двух типов – разборные (при загрязнении фильтра меняется лишь фильтрующий элемент) и неразборные (меняется весь фильтр).
  • Масляный радиатор. Поскольку рабочая жидкость в системе смазки также осуществляет охлаждение, для снижения ее собственной температуры она проходит через радиатор. Последний, в свою очередь, охлаждается жидкостью системы охлаждения.
  • Магистрали и каналы – по ним движется масло от одного узла к другому.
  • Масляные форсунки. Используются для подачи масла на стенки цилиндров и поршни.
  • Датчики давления, температуры и уровня масла – подают сигналы на электронный блок управления двигателем, передавая данные о состоянии системы смазки и режиме работы двигателя.
  • Клапаны (перепускные и редукционные). Позволяют автоматизировать контроль давления масла и управлять его подачей в систему. Такие клапаны монтируются вблизи ведущих элементов системы (насоса, основных узлов двигателя, фильтра).

В некоторых моделях двигателей датчики и радиатор могут отсутствовать. При этом охлаждение масла происходит непосредственно в поддоне картера.

Системы питания карбюраторных и дизельных двигателей

От работы системы питания двигателя существенно зависят мощность, экономичность, надежность, безотказность и долговечность работы двигателя в различных условиях эксплуатации, токсичность отработавших газов.

Дизельный двигатель: устройство системы питания

Системы питания карбюраторных двигателей и дизелей существенно различаются способами смесеобразования, воспламенения и сгорания. Так, в карбюраторном двигателе топливо из бака 2 засасывается диафрагменным насосом 4, проходит фильтр грубой очистки 3 и подается насосом в фильтр тонкой очистки и далее в поплавковую камеру карбюратора 8. При вращении коленчатого вала и перемещении поршней в цилиндрах двигателя в карбюраторе создается разрежение. Вследствие этого в карбюратор засасываются топливо и воздух. Топливо распыливается в потоке воздуха и испаряется, образуя горючую смесь. Далее горючая смесь по впускному трубопроводу 9 поступает в цилиндры и там сгорает. Отработавшие газы отводятся в выпускной трубопровод 11, проходят глушитель 12 и выбрасываются в окружающую среду.

В системах питания карбюраторных двигателей топливный насос подает в 1,5…2 раза больше топлива, чем необходимо для работы двигателя при полной нагрузке. Избыточное топливо возвращается через жиклер 6 и отводящий топливопровод в бак, обеспечивая хороший отвод пузырьков пара и воздуха.

В системе питания дизеля подача и очистка воздуха и удаление отработавших газов, по существу, не отличаются от аналогичных процессов в системе питания карбюраторного двигателя. Принципиально система отличается приборами топливоподачи и смесеобразования, основными из которых являются топливный насос высокого давления 5 и форсунка 7.

Из топливного бака 1 по топливопроводу через фильтр грубой очистки 2 топливо засасывается подкачивающим насосом 3 и подается через фильтр тонкой очистки в полость насоса высокого давления 5, с помощью которого топливо дозируется, подается по топливопроводу высокого давления и через форсунку 7 впрыскивается в цилиндр. Излишки подаваемого топлива из полости насоса высокого давления по трубопроводу 6 возвращаются в бак.

Простейший карбюратор состоит из поплавковой камеры 2 с поплавком 1, запорной иглы 4, жиклера 12 с распылителем 9, диффузора 8, дроссельной 10 и воздушной 7 заслонок и смесительной камеры 11.

Топливо из бака по топливопроводу 3 поступает в поплавковую камеру 2 и заполняет ее. Когда уровень топлива в поплавковой камере достигнет верхнего предела, поплавок 1 прижмет запорную иглу 4 к ее седлу и поступление топлива прекратится. При понижении уровня поплавок опустится и игла откроет доступ топливу в поплавковую камеру.

Из поплавковой камеры топливо через жиклер 12 поступает в распылитель 9, выходное отверстие которого находится в горловине диффузора 8. Чтобы топливо не вытекало из распылителя при неработающем двигателе, выходное отверстие распылителя расположено на 1…2 мм выше уровня топлива в поплавковой камере.

Во время такта впуска при открытых воздушной 7 и дроссельной 10 заслонках разрежение из цилиндра передается в смесительную камеру 11 и вызывает в ней движение воздуха в направлении, указанном стрелками. Разрежение в смесительной камере можно регулировать дроссельной 10 и воздушной 7 заслонками.

Воздух, всасываемый в цилиндр двигателя, последовательно проходит через воздухоочиститель 6, патрубок и диффузор 8. Так как проходное сечение в горловине диффузора уменьшается, скорость воздуха в ней возрастает и разрежение увеличивается. Вследствие разницы между атмосферным давлением в поплавковой камере и разрежением в диффузоре топливо фонтанирует из распылителя. Струи воздуха движутся через диффузор со скоростью, примерно в 25 раз большей скорости капель топлива, поступающих из распылителя. Поэтому топливо распыливается на более мелкие капли и, смешиваясь с воздухом, образует горючую смесь, которая поступает в цилиндр двигателя. В результате распыливания поверхность соприкосновения частиц топлива с воздухом увеличивается, топливо интенсивно испаряется.

Популярные статьи  Перелив масла в двигатель: последствия и признаки

Common Rail

После значительного ужесточения экологических норм для дизельных силовых установок, система питания моторов, работающих на солярке, подверглась изменениям.

Схема подачи топлива, когда смесь воздуха и горючего поступает в рабочую камеру при атмосферном давлении, стала называться Common Rail. Как результат, за счет такого принципа можно снизить расход и увеличить мощность установки. Кроме того, схема получила широкое применение, благодаря снижению шума и увеличению крутящего момента мотора. На сегодня, каждый второй автомобиль оснащен данной системой.

Однако, как и у каждого механизма, есть и недостатки. Например, для этой системы требуется качественное топливо, небольшое загрязнение способно привести к полной остановке агрегата, поскольку работа форсунок будет заблокирована.

Преимущества и недостатки

Существует ряд факторов, которые выгодно отличают дизельные двигатели:

  • экономичность. КПД в 40% (до 50% с применением турбонаддува) просто недосягаемый показатель для бензинового собрата;
  • мощность. Практически весь крутящий момент доступен на самых низких оборотах. Турбированный дизельный двигатель не имеет ярко выраженной турбоямы. Такая приёмистость позволяет получить настоящее удовольствие от вождения;
  • надежность. Пробег самых надежных дизельных двигателей доходит до 700 тыс. км. И все это без ощутимых негативных последствий. Благодаря своей безотказности, дизельные ДВС ставят на спецтехнику и грузовики;
  • экологичность. В борьбе за сохранность окружающей среды дизельный двигатель превосходит бензиновые моторы. Меньшее количество выбрасываемого СО и использование технологии рециркуляции выхлопных газов (EGR) приносят минимум вреда.

Недостатки:

  • стоимость. Комплектация, оснащённая дизельным двигателем, будет стоить на 10% больше, чем такая же модель с бензиновым агрегатом;
  • сложность и дороговизна обслуживания. Узлы ДВС выполнены из более прочных материалов. Сложность устройства двигателя и топливной аппаратуры требует качественных материалов, новейших технологий и большого профессионализма в их изготовлении;
  • плохая теплоотдача. Большой процент КПД значит то, что при сгорании топлива происходят меньшие потери энергии. Другими словами, выделяется меньше тепла. В зимнее время года эксплуатация дизельного двигателя на короткие расстояния будет негативно сказываться на его ресурсности.

Рассмотренные минусы и плюсы не всегда уравновешивают друг друга. Поэтому вопрос о том, какой из двигателей лучше, будет стоять всегда. Если вы собираетесь стать владельцем такого автомобиля, учтите все особенности его выбора. Именно ваши требования к силовой установке будут тем фактором, который решит что лучше: бензиновый или дизельный двигатель.

Диагностика топливных систем дизельных двигателей

Как видно, хотя в дизельном моторе вполне могут выйти из строя клапана ГРМ, поршни или кольца, большинство неисправностей дизеля связаны именно с системой питания.

По этой причине проверка узлов и элементов топливной системы является первостепенной задачей.

Владельцы дизельных ДВС регулярно сталкиваются с закоксовкой распылителя на форсунках или ухудшением подвижности иглы. Также часто при проверке выявляется снижение давления впрыска, которое обычно связано с износом или повреждением плунжерных пар.

Изношенными могут оказаться и нагнетательные клапаны, а еще распространенной ситуацией является нарушение правильной регулировки ТНВД. Как правило, к таким неполадкам приводят тяжелые условия эксплуатации, нарушение или игнорирование базовых рекомендаций по обслуживанию двигателя, а также использование дизтоплива низкого качества.

Среди основных методов диагностики специалисты выделяют три:

  1. Визуальный осмотр и анализ шумов во время работы ДВС.
  2. Замеры определенных параметров (давление топлива и т.п.).
  3. Компьютерная диагностика дизельного двигателя.

В первом случае можно быстро выявить серьезные неисправности, которые приводят к явным сбоям в работе силовой установки. Если мастер опытный, тогда одного визуального осмотра будет достаточно для оценки состояния двигателя, ответственных узлов топливоподающей аппаратуры и т.д.

Сделать выводы о состоянии ДВС позволяет воздушный фильтр, звук работы дизеля и ТНВД на ХХ и под нагрузкой, цвет выхлопных газов, внешний вид свечей накала и осмотр других элементов.

Во втором случае предполагается, что мастер локализовал проблему, однако необходимо более точное определение неполадки при помощи замеров ряда параметров, которые укажут на отклонения в работе той или иной системы или самого мотора.

Такая диагностика топливной системы дизельных двигателей и других узлов обычно проводится на машинах, где электронная диагностика при помощи сканеров невозможна (старый дизель с механическим ТНВД). В этом случае потребуется снять форсунки для их проверки, замерить компрессию, давления наддува, давление картерных газов, проверить фильтры, фазы газораспределения, установку приводных ремней, провести диагностику калильных свечей и т.д.

Например, замер компрессии в цилиндрах часто проводится, если дизель троит. Троение может указывать как на проблемы в системе питания, так и на неисправности в силовом агрегате. В ситуации, когда компрессия низкая, топливо не горит и цилиндр попросту не работает. Это значит, ремонтировать нужно не элементы топливоподачи, а сам двигатель.

Третий способ позволяет выявить сбои и поломки как в электронной системе управления двигателя (ЭСУД), так и целый ряд «механических» проблем. Компьютерная диагностика позволяет проверить работу датчиков и управляющей электроники, а также на основании анализа показаний от датчиков определить другие неисправности.

В наше время компьютерная диагностика дизельного ДВС позволяет провести многоуровневую проверку агрегата, диагностируя топливную систему, систему управления, исполнительные устройства.

Что касается диагностики топливной аппаратуры дизельных двигателей, на начальном этапе производится анализ работы «электрической» части форсунок, также компьютерное сканирование определяет показатели температуры, производится замер параметров во время работы вакуумных устройств и т.д.

Далее все собранные показания оцениваются, после чего компьютер выводит данные об ошибках, что позволяет приступить к устранению обнаруженных дефектов. Главным плюсом такой диагностики является простота, скорость работы, а также отсутствие необходимости разбирать двигатель и проводить дополнительные манипуляции.

Функции, устройство и принцип функционирования

Каждый автомобиль характеризуется таким понятием, как «запас хода». Он определяется расстоянием, которое автомобиль способен преодолеть на полном топливном баке без дополнительных заправок. На данный показатель оказывают влияние самые различные факторы: сезонные, погодные и природные условия движения, характер дорожного покрытия, степень загруженности автомобиля, индивидуальные особенности водителя при управлении транспортным средством и т.д.). Однако главенствующую роль в определении «аппетита» автомобиля играет система питания и ее правильная работа.

Дизельный двигатель: устройство системы питания
Система питания выполняет функции:

  1. подачи топлива, его очистки и хранения;
  2. очистки воздуха;
  3. приготовления специальной горючей смеси;
  4. подачи смеси в цилиндры ДВС.

Классическая система питания автомобиля состоит из следующих структурных элементов:

  • топливного бака, предназначенного для хранения горючего;
  • топливного насоса, выполняющего функции создания давления в системе и принудительной подачи топлива;
  • топливопроводов – специальных металлических трубок и резиновых шлангов для транспортировки горючего из топливного бака к ДВС (а излишков топлива – в обратном направлении);
  • фильтра (или фильтров) очистки топлива;
  • воздушного фильтра (для очистки воздуха от примесей);
  • устройства приготовления топливно-воздушной смеси.

Система питания имеет достаточно простой принцип работы: под воздействием специального топливного насоса горючее из бака, предварительно пройдя процедуру очистки топливным фильтром, по топливопроводам подается к устройству, предназначенному для приготовления топливно-воздушной смеси. И уже затем смесь подается в цилиндры двигателя.

Популярные статьи  Автомобильное масло «Хонда» 5W30

Техническое обслуживание систем питания дизельных двигателей

Предыдущая117118119120121122123124125126127128129130131132Следующая

Техническое обслуживание системы питания дизельных двигателей заключается в проверке исправности приборов, обнаружении и устранении неисправностей, заправке топливом, сливе отстоя из топливных баков и фильтров, замене в них фильтрующих элементов, удалении воздуха из системы, проверке действий привода управления и угла опережения подачи топлива, регулировке минимальной частоты вращения коленчатого вала двигателя на холостом ходу.

При ЕТО сливается отстой из топливных фильтров, машина заправляется топливом, проверяется уровень масла в топливном насосе высокого давления и регуляторе частоты вращения коленчатого вала (для двигателей без централизованной смазки ТНВД).

При ТО-1 выполняются работы, предусмотренные ЕТО, а также сливается отстой из топливных баков, проверяется состояние фильтрующих элементов фильтров грубой н тонкой очистки, действие пусковых устройств, механизма останова, при необходимости регулируется частота вращения коленчатого вала двигателя на холостом ходу.

При ТО-2 дополнительно к перечисленным работам промывается воздушный фильтр, заменяются фильтрующие элементы фильтров грубой и тонкой очистки, проверяется герметичность системы, циркуляция и давление топлива в системе, момент подачи топлива в цилиндры. При необходимости снимаются форсунки, проверяются и регулируются на стенде.

При СО промываются топливные баки и фильтры топливоприемников в баках, заменяется топливо на сорт, соответствующий периоду эксплуатации. При необходимости снимаются и проверяются на стендах: топливный насос высокого давления на начало, величину и равномерность подачи топлива отдельными секциями; топливоподкачивающий насос на величину подачи и создаваемое им давление.

Характерными неисправностями системы питания дизельного двигателя являются: затрудненный пуск, неравномерная работа, дымление, снижение мощности дизеля.

Затрудненный пуск возможен из-за недостаточной подачи топлива в цилиндры. Причинами недостаточной подачи топлива могут быть: наличие воздуха в системе питания, засорение фильтров, неисправность топливоподкачивающего насоса, снижение давления впрыска в результате износа плунжерных пар насоса высокого давления, ухудшение распыливания топлива при закоксовывании или износе сопловых отверстий распылителей форсунок.

Перебои в работе двигателя возможны в результате неравномерной подачи топлива секциями топливного насоса высокого давления, износа деталей форсунок.

Дымление (черный выхлоп) является результатом неполного сгорания вследствие преждевременной, поздней или слишком большой подачи топлива секциями насоса высокого давления, увеличения или закоксовывания сопловых отверстий форсунок.

Снижение мощности может произойти из-за засорения воздушного фильтра, нарушения регулировки угла опережения впрыска топлива, неисправностей насоса высокого давления или форсунок.

Герметичность системы питания проверяется при каждом обслуживании машины.

Негерметичность топливопроводов, работающих под давлением, обнаруживается по течи топлива при осмотре мест соединений во время работы двигателя на холостом ходу.

Негерметичность топливопроводов, работающих под разряжением (до топливоподкачивающего насоса), определяется по выделению пузырьков воздуха из-под ослабленной контрольной пробки на крышке фильтра тонкой очистки при работе двигателя минимальной частотой вращения на холостом ходу. В случае невозможности пустить двигатель место негерметичного соединения можно определить с помощью ручного топливоподкачивающего насоса.

На двигателе КамАЗ-740 проверяют совмещение меток на корпусе автоматической муфты опережения впрыска и корпусе топливного насоса в момент, когда фиксатор на картере маховика под действием пружины войдет в отверстие на маховике.

Минимальную частоту вращения на холостом ходу регулируют на прогретом двигателе с помощью регулировочного болта минимальной частоты вращения и винта буферной пружины, установленной на корпусе регулятора насоса высокого давления.

Предыдущая117118119120121122123124125126127128129130131132Следующая

Дата добавления: 2016-09-26; просмотров: 7494; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Краткий экскурс в историю

Чтобы совершить великую транспортную революцию, Рудольфу Дизелю пришлось использовать 13 страниц бумаги на которой и был продуман, начерчен и детально изложен принцип работы его детища. Патент был успешно одобрен и выдан имперским ведомством в Германии — это случилось 23 февраля 1893 года. Результатом его интеллектуальной работы и инженерного таланта стало миллиарды различного транспорта от легковых автомобилей до огромных транспортных танкеров, работающих по тому же принципу и сегодня. К несчастью сам Рудольф не дожил до момента всемирного признания и погиб во время морского приключения в 1913 году. 

 В чем же секрет Рудольфа, почему его изобретение стало трендом в моторостроительстве и оказало большое влияние на индустриальный мир?

Секрет скрывается в способе воспламенения топливовоздушной смеси, а именно в ее самовозгорании. В конструкции инженера смесь сжималась в соотношении 20 к 1, что приводило к воспламенению. Результат– его эффективность была значительно выше аналогов того времени. Для сравнения — модели на бензине показывали КПД в 12%, газовые в 17%, а даже первый прототип Рудольфа мог похвастаться 25% коэффициентом полезного действия.

Двигатели Дизеля выходят на рынок

В 1920-ых годах эксперты в области транспорта пророчили изобретению большое будущее. Но до наступления золотого века двигателей на «солярке» пришлось ждать еще не один год. В германии первое авто с данным типом движка выпустили аж в 1924. Американская компания Cummins решила получить технологическое преимущество и вырываться вперед от многочисленных бензиновых конкурентов. Так в 1929 году она использовала движок Дизеля в легковой модели автомобиля. Первое конвейерное производство транспорта с инновационным движком началось в 1936 году, попробовать вкус нефтяного топлива довелось модели Mercedes-Benz 260D. Но это не перевернуло мышление автолюбителей того времени, они все еще воспринимали изобретение Рудольфа, как что-то медленное, небрежное, грязное, неэкономичное и шумное.

Но после Второй мировой коллективное отношение к технологии изменилось. В 1975 модель VW GOLF Diesel завоевала недоверчивые сердца потребителей и принцип работы системы питания дизельного двигателя стал общедоступным и понятным для многих покупателей. А благодаря хитрой разработке топливных насосов нового поколения от компании Bosch движок стал меньше потреблять горючего и изменилось общее устройство движка. Затем эта модель была усовершенствована до спортивного авто, ее оснастили турбонаддувом. После успеха на рынке, зеленый свет, открылся для остальных ведущих производителей, кто боялся рисковать капиталом, теперь могли наладить выпуск моделей с изобретением Рудольфа.

Увеличение производительности и дальнейшее завоевание рынка

После того как рынок компактных авто был покорен, дизельная инновация перешла к завоеванию всего автопрома. Инженерам удалось спроектировать конструкцию, которая повышала давление, а система моментального впрыска избавила от посредничества и освободило место и облегчило вес, избавившись от ненужного отсека камеры сгорания. Новинка компании Bosch сделала реальным подачу топлива под давлением в тысячу бар прямо в цилиндрический бак — это привело к более эффективному сжиганию топлива. С каждым годом, улучшались показатели, рос потребительский спрос, что стимулировало изучение движков, работающих на дизеле. В начале нового тысячелетия моторы могли выдавать показатели в 2000 бар, и эта цифра растет до сих пор.

Чем отличается дизельный двигатель от бензинового

Перед многими любителями автомобилей стоит вечный вопрос: какому двигателю отдать предпочтение – бензиновому или дизельному? Это вопрос из серии риторических, поскольку и тот и другой имеют свои достоинства и недостатки. Давайте рассмотрим, «и разложим по полочкам», в чем отличие бензинового двигателя внутреннего сгорания от дизельного, а также основные «плюсы» и «минусы» обоих видов агрегатов.

Оба рассматриваемых двигателя относятся к двигателям внутреннего сгорания (ДВС). То есть потребляемое топливо сгорает внутри двигателя, а ДВС преобразует теплоту сгорания топлива в механическую энергию. Автомобили, скутеры, мотоциклы, тракторы и другие транспортные средства ездят именно за счет ДВС. Первый ДВС изобрел французский механик Этьен Ленуар в 1860 году.

Популярные статьи  Грузы и пассажиры: сравнение Ford Ranger и Volkswagen Amarok

Дизельный двигатель: устройство системы питания

Основные отличия двух ДВС друг от друга:

Первое очевидное отличие состоит в том, что каждый из двух рассматриваемых ДВС работает на разных производных нефти: бензиновый двигатель работает на бензине, а дизельный – на дизеле (солярке, ДТ и пр.);

В основе бензинового двигателя лежит свеча, которая поджигает подаваемое топливо и приводит его в действие. В цилиндре дизельного ДВС поршень создает высокое давление на воздух. В результате сжатия воздух набирает температуру около 900 С. Параллельно в камере сгорания распыляется дизель. В итоге получаемая смесь загорается, и двигатель приходит в действие;

КПД дизельного двигателя более высокий, чем у бензинового;

По габаритам дизельный двигатель значительно превосходит бензиновый.

Бензиновый двигатель: преимущества и недостатки

Основные преимущества бензинового двигателя – это простота в изготовлении, демократичная цена, практически бесшумная работа, быстрый ремонт деталей и высокий срок эксплуатации. Также неоспоримый «плюс» бензинового двигателя – это быстрое нагревание салона машины в зимнее время (так как сам агрегат греется быстро).

Один из основных недостатков бензинового двигателя – это довольно высокая взрывоопасность. При возникновении аварийной ситуации вероятность возгорания велика. Также бензиновый двигатель кушает много топлива, вам придется регулярно заправляться. Из технических характеристик: чтобы двигатель не износился, его придется часто смазывать.

Дизельный двигатель: преимущества и недостатки

Двигатель на дизеле потребляет значительно меньше топлива, чем бензиновый агрегат. Очевидно, что вы будете тратить меньше денег на заправку своего автомобиля. Еще одно преимущество дизельного двигателя – это высокая мощность даже на низких оборотах, следовательно — быстрый разгон. С точки зрения безопасности дизельный двигатель более предпочтителен.

К недостаткам дизельного двигателя относятся: высокая стоимость самого устройства, шум во время работы и длительное прогревание машины в зимнее время.

Выводы:

  1. Оба вида двигателя в современном исполнении по-своему хороши;
  2. Несмотря на то, что сейчас придумали много автоматических систем нагрева салона машины, в зимнее время дизельный автомобиль нагревается намного медленнее бензинового;
  3. Приобретение дизельного автомобиля – это экономия на топливе в чистом виде;
  4. Старайтесь подходить к выбору своего будущего автомобиля с точки зрения рационального мышления. Европейцы все чаще отдают предпочтение дизельным автомобилям, поскольку у них относительно теплые зимы;
  5. Выбирать машину по параметру «вид двигателя» стоит исходя из того, какие слабые стороны того или иного двигателя для вас критичны.

Система питания турбодизеля

Дизельный двигатель: устройство системы питания

Система турбонаддува активно применяется для эффективного повышения мощности как бензинового, так и дизельного двигателя без увеличения рабочего объема камеры сгорания в конструкции силового агрегата. Топливоподводящая система в турбированных ДВС остается практически без изменений, зато схема и способ подачи воздуха в турбомоторах существенно меняется по сравнению с атмосферными агрегатами.

Наддув в дизельном двигателе реализован путем использования турбокомпрессора. Турбина в дизельном моторе использует энергию отработавших газов. Воздух в турбокомпрессоре сжимается, далее охлаждается и нагнетается в камеру сгорания дизельного ДВС под давлением на отметке от 0,15 до 0,2 МПа.

Величина давления позволяет разделить системы турбонаддува на:

  • решения с низким наддувом, когда давление не превышает 0,15 МПа;
  • турбокомпрессор среднего наддува означает, что давление нагнетаемого в цилиндры воздуха соответствует показателю 0,2 МПа;
  • высокий наддув подразумевает давление свыше 0,2 МПа;

Основной задачей системы турбонаддува является подача порции воздуха в цилиндры мотора на дизеле или бензине под давлением. Дизельный агрегат с системой турбонаддува называется турбодизельным двигателем.

Использование турбокомпрессора для ДВС улучшает наполнение цилиндров двигателя воздухом. Автоматически происходит повышение эффективности сгорания порции впрыскиваемого топлива. Турбонаддув позволяет увеличить мощность силового агрегата на 30% и более.

Негативными последствиями в результате использования турбонаддува, особенно с высокими показателями давления нагнетаемого воздуха, является увеличение общей температуры в камере сгорания в результате интенсивного горения топлива, а также значительно возрастающие механические нагрузки на детали кривошипно-шатунного механизма (КШМ) и газораспределительного механизма (ГРМ) по сравнению с атмосферными силовыми установками.

Основной рабочий узел

Состоит эта пара из двух частей – поршня (он же плунжер) и гильзы (втулки). Поскольку в узле создается высокое давление, то утечки между составными элементами не допускаются. Поэтому рабочие поверхности поршня и гильзы имеют высокую степень обработки, поэтому не редко пару называют прецизионной.

Дизельный двигатель: устройство системы питания

Плунжерная пара

Суть работы пары построена на возвратно-поступательном перемещении плунжера внутри втулки. При этом посредством каналов или клапанов обеспечивается попадание топлива в надплунжерную полость и отвод его после сжатия.

Дизельный двигатель: устройство системы питания

Работа плунжерной пары

Работает все так: при перемещении поршня вниз открывается канал или клапан подачи (зависит от устройства ТНВД), и топливо закачивается в полость. При передвижении вверх подача прекращается (канал или клапан закрывается) и плунжер начинает сжимать дизтопливо. При достижении определенного значения давления открывается нагнетательный клапан и дизтопливо (уже находящееся в сжатом состоянии) выходит в магистраль, ведущую к форсункам.

В общем, работа самой плунжерной пары очень проста, но существует множество нюансов и особенностей, в том числе и конструктивных, которые влияют на функционирование этого узла. Поэтому принцип работы ТНВД следует рассматривать отдельно по каждому из указанных видов.

Как работает система подачи топлива

Общий принцип работы системы питания ДВС аналогичен и основан на нескольких этапах:

  1. Перед пуском двигателя насос создаёт давление топлива в системе от 2 атм до 3.5 атм.
  2. Затем на электронный блок управления подаётся информация о температуре топлива и двигателя, чтобы оптимизировать подачу топливной смеси через дозирование топлива форсунками.
  3. При прокручивании стартера автоматически начинается подача бензина в камеру сгорания.
  4. С различных датчиков собираются данные для оптимальной работы системы, в случае обнаружение неисправностей или низкого качества топлива на щитке приборов загорается индикатор «Check Engine».

Инжектор обеспечивает легкий запуск двигателя в любую температуру, экономичность, приёмистость двигателя, низкий уровень токсических выбросов для версий, оснащённых катализатором и надёжность. Инжекторная система с непосредственным впрыском является оптимальным с точки зрения экономии и надёжности.

Недостаток инжекторов — это требования к качеству топлива. Некачественное топливо способно вывести из строя дорогостоящие форсунки и катализатор.

Профилактические меры для долговременной работы системы рекомендуется промывка инжектора через каждые 30 тыс. км. Эта процедура продлит срок службы инжектора и поддержит высокую экономичность топлива.

Оцените статью
( Пока оценок нет )
Добавить комментарий