Роторные двигатели: принцип работы, ресурс и особенности

Классификация электродвигателей

Вращающийся электродвигатель
Само коммутируемый Внешне коммутируемый
С механической коммутацией (коллекторный) С электронной коммутацией1 (вентильный2, 3) Асинхронный электродвигатель Синхронный электродвигатель
Переменного тока Постоянного тока Переменного тока4 Переменного тока
  • Универсальный
  • Репульсионный
    • Включение обмотки
  • БДПТ(Бесколлекторный двигатель + ЭП |+ ДПР)
  • ВРД(Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)
  • Трехфазный(многофазный)
  • Двухфазный(конденсаторный)
  • Однофазный
  • СДОВ
  • СДПМ
    • СДПМВ
    • СДПМП
    • Гибридный
  • СРД
  • Гистерезисный
  • Индукторный
  • Гибридный СРД-ПМ
  • Реактивно-гистерезисный
  • Шаговый5
Простая электроника Выпрямители,транзисторы Более сложнаяэлектроника Сложная электроника (ЧП)

Примечание:

  1. Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
  2. Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря .
  3. Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля .
  4. Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
  5. Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.

Аббревиатура:

  • КДПТ — коллекторный двигатель постоянного тока
  • БДПТ — бесколлекторный двигатель постоянного тока
  • ЭП — электрический преобразователь
  • ДПР — датчик положения ротора
  • ВРД — вентильный реактивный двигатель
  • АДКР —
  • АДФР —
  • СДОВ — синхронный двигатель с обмоткой возбуждения
  • СДПМ — синхронный двигатель с постоянными магнитами
  • СДПМП —
  • СДПМВ —
  • СРД — синхронный реактивный двигатель
  • ПМ — постоянные магниты
  • ЧП — частотный преобразователь

Принцип работы роторного двигателя

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!

Роторный двигатель в разрезе

Ротор роторного двигателя

Камера роторного двигателя

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень. Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа. В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал роторного двигателя

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Как самостоятельно полировать автомобиль?

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Популярные статьи  Подключение сабвуфера в автомобиле: что нужно знать

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Запуск двигателя

После проверки рабочей камеры на герметичность и сборки двигателя необходимо проверить его работоспособность. Для этого:

  • Подобрать источник тепловой энергии. Это может быть свеча или любое другое топливо. Можно использовать сосуд с горячей водой. Для этого нижнюю поверхность рабочей камеры необходимо установить на емкость с жидкостью;
  • Установить изделия на подставку. На дно подставки поместить источник тепловой энергии;
  • На верхнюю поверхность рабочей камеры поместить кубики льда;
  • Раскрутить маховик вручную.

После раскручивания маховика двигатель должен начать работу. Поршень и шток вытеснителя будут попеременно воздействовать на коленчатый вал установки. Стабильную работу будет обеспечивать сила инерции маховика.

Из вышеперечисленного следует, что двигатель Стирлинга это силовой агрегат, работающий от разницы температур рабочего тела. Мотор может работать на любом виде топлива. Модель силовой установки можно собрать самостоятельно в домашних условиях. Для этого не потребуется специализированных материалов и оборудования. В качестве источника питания для модели силовой установки может использоваться свеча, сухое горючее и т.п.

Преимущества и недостатки РДВС

С момента своей презентации роторно-поршневой силовой агрегат постоянно был в центре внимания специалистов, а многие солидные автопроизводители начали инвестировать в исследования, посвящённые разработке этого типа мотора, громадные суммы. И неспроста: конструкция такого агрегата на порядок проще классического двигателя. Собственно говоря, основными в нём являются две детали: корпус и ротор. Куда уж проще!

Перечислим преимущества, которые сулит использование роторного привода:

  • простота конструкции – фактор, способствующий достижению практически идеальной сбалансированности двигателя: минимум деталей позволил свести вибрационные процессы, характерные для ПДВС, практически на нет,
  • даже не слишком удачные реализации роторного силового агрегата позволяли получать великолепную динамику без увеличения нагрузки на сам мотор. Это наглядно демонстрируют и последние модели Мазда. К примеру, RX-8 с роторным двигателем разгоняется до сотни примерно за такое же время, но без перехода на самую высокую передачу, просто за счёт высоких оборотов,
  • хотя несколько роторов требуют относительно большого объема для размещения, за счёт отсутствия множества дополнительных узлов и агрегатов такой двигатель получается заметно компактнее поршневого, и намного легче. Для конструкторов это идеальный вариант, предоставляющий возможность выполнить идеальную межосевую развесовку. А это, кстати, фактор, существенно улучшающий устойчивость транспортного средства во время выполнения скоростных манёвров,
  • минимизация узлов существенно упрощает обслуживание такого агрегата, увеличивается его надёжность и безотказность,
  • наконец, роторный ДВС характеризуется отменной удельной мощностью, недостижимой для своих классических собратьев.

Вы спросите, почему же при таком количестве впечатляющих достоинств роторные моторы не вытеснили поршневые?

Всё очень просто: минусы роторного двигателя перевешивают плюсы, а современное автомобилестроение – это, прежде всего, целесообразность. Даже если речь идёт об экологичных машинах, учтите, что их производство в значительной степени субсидируется на государственном уровне. О роторных установках этого не скажешь.

Так в чём же заключаются их недостатки? Судите сами:

  • главным, и самым существенным минусом этого типа двигателей считается очень высокий расход горючего, особенно на невысоких скоростях и низких оборотах. Типичный показатель – 20 и более литров на 100 километров. При нынешнем уровне цен на топливо это, конечно неприемлемо. Особенно если сравнивать с аналогичными по мощности бензиновыми ДВС, у которых расход постоянно снижается и уже частично преодолел знаковую отметку в 5 л/100 км.,
  • отсутствие симметрии – другой существенный недостаток таких двигателей. Чтобы идеально скомпоновать ротор и статор, чтобы прохождение эпитрохоидальной кривой было максимально правильным, требуется использование дорогостоящего специализированного и высокоточного оборудования. Без него добиться геометрически безупречной подгонки деталей невозможно. Разумеется, это тоже влияет на стоимость машины, и отнюдь не в сторону снижения,
  • поскольку камера сгорания у роторных агрегатов имеет не круглое, а линзовидное сечение, это негативным образом сказывается на тепловых характеристиках мотора. Другими словами, при сгорании значительная часть энергии из-за специфической формы ротора и статора расходуется не на проталкивание ротора, а на его нагрев. Так что борьба с перегревом – очередное слабое место двигателей данного типа,
  • производителям так и не удалось справиться с проблемой быстрого износа уплотнителей, устанавливаемых между форсунками. Значительные перепады давления, характерные для камер сгорания, разрушают уплотнители, и в результате после 100, максимум 150 тысяч км пробега роторному двигателю требуется капремонт. А это – большая проблема, и даже не из-за высокой стоимости: таких специалистов и автосервисов нужно ещё поискать,
  • наконец, РДВС расход моторного масла гораздо выше: на каждые 1000 километров расходуется примерно 600 мл смазывающей жидкости, и это при новом и неизношенном моторе. Поэтому процедура замены масла производится намного чаще (каждые 5 тысяч километров), что, безусловно, увеличивает стоимость владения таким автомобилем. Но критично не это: если вы забыли вовремя долить/сменить ММ, поломки мотора не заставят себя долго ждать. Так что с точки зрения техобслуживания роторный двигатель, несмотря на свою простоту, не позволит автовладельцу расслабиться.

Разумеется, инженеры Мазда работают над устранением этих проблем, но у главной из них, снижения расхода топлива, похоже, приемлемого решения нет и не предвидится.

Роторный двигатель, принцип действия

В роторном двигателе используется давление, которое создается во время сгорания топливно-воздушной смеси в пространстве между ротором и корпусом двигателя.

Популярные статьи  Все о новом Шевроле Орландо 2022: цены, характеристики и отзывы

Только если в поршневом моторе внутреннего сгорания это давление получают в цилиндрах, после чего через поршни, и шатуны передают на коленчатый вал, то в роторном упомянутых промежуточных звеньев нет.

Треугольный ротор в устройстве играет роль поршня, вращающегося по кругу и передающего крутящий момент непосредственно на выходной вал.

Получается, что ротор, в процессе вращения, делит камеру на 3 изолированных сегмента. В объеме каждого из них происходит один из циклов: впуск, сжатие, зажигание и выброс.

Оборот ротора, соответствует трем оборотом вала. Обычно используют два ротора. Это позволяет убрать детонацию, повысить стабильность работы движка.

Ротор устанавливается на вал с эксцентриситетом, это позволяет перенести крутящий момент непосредственно на вал.

Роторный двигатель принцип работы заключается в том, что имеет четыре такта, они изменяются в зависимости от угла расположения ротора. Рассмотрим каждый из тактов:

  • Забор смеси происходит когда одна из вершин ротора находится в районе впускного клапана в корпусе. В этот момент, объем камеры увеличивается, втягивая в свое растущее пространство смесь. А когда вторая вершина приходит ко впускному каналу, происходит очередной такт;
  • Сжатие топливно-воздушной смеси происходит при дальнейшем повороте ротора, когда объем смеси, уменьшается и приводит к росту давления. Максимальный уровень давления наблюдается в период, когда смесь поступает в зону свечей;
  • Сжигание топливно-воздушной смеси, как и в обычном бензиновом двигателе, инициируется свечами. Они синхронно поджигают смесь. Обычно, применяют 2 свечи, чтобы смесь горела с большей скоростью и равномернее. Образовавшееся давление взрывной волны, создает рабочее усилие; которое проворачивает ротор на эксцентрике вала. На выходной вал передается крутящий момент;
  • Выпуск отработавших выхлопных газов начинается как только ротор одной из вершин проходит точку выпускного отверстия. Далее он по инерции, и под воздействием второго ротора, который работает в асинхронном режиме, изменяет свой угол и приходит вершиной к впускному отверстию. Все повторяется по новой – от такта забора до такта выхлопа.

Конструктивные особенности

Теперь познакомимся с узлами и деталями двигателя. Это поможет более точно понять как работает устройство.

Роторные двигатели: принцип работы, ресурс и особенностиВ его составе присутствуют: системы зажигания, питания (в том числе карбюратор), охлаждения, которые напоминают те, что используются в поршневом варианте. Но есть и уникальные элементы.

Ротор содержит три выпуклых поверхности с углублениями, которые увеличивают рабочий объем. На углах расположены однонаправленные уплотнительные пластины. Они обеспечивают герметизацию пары ротор-корпус.

Еще предусмотрены стальные кольца с каждой стороны, для отделения рабочей камеры от картера.

Также у ротора есть в центре с одной стороны зубчатый венец. Через эту зубчатую передачу снимается крутящий момент.

Корпус роторного движка напоминает многослойный пирог. Он состоит из крышек, рабочих камер, разделительных стенок. Предусмотрено две камеры, разделенные стенкой и с двух сторон крышки.

Внутри корпус представляет собой сложную форму типа овала, с компенсирующими отливами, которые отвечают за герметизацию всех трех камер разделяемых ротором.

Выходной вал имеет два эксцентрика, так как на валу установлены два ротора, работающие в противофазе – на одном цикл выброса отработавших газов, на втором цикл забора смеси.

Использование двух аналогичных узлов исключает возникновение биений и уменьшает детонацию.

При смещении эксцентриков и перемещении каждого ротора по стенкам корпуса, они проворачивают вал.

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.

Роторные двигатели: принцип работы, ресурс и особенности
Двигатель, запитываемый от переменного тока

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).
Популярные статьи  Работа цилиндров двигателя на разных типах моторов: порядок работы цилиндров

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.

Роторные двигатели: принцип работы, ресурс и особенности
Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость. Работает подобный агрегат следующим образом:

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.

Известные авто, оснащенные роторным двигателем

В перечень автомобилестроительных компаний, в которых нашлись приверженцы роторного двигателя. Ниже перечислены несколько серийных моделей, выпускавшихся с 70–х гг. прошлого века. В СССР первенцем стала модель ВАЗ–2107 “Жигули”, получившая работоспособный роторный двигатель ВАЗ мощностью 140 л. с. Машина ограниченно использовались силовыми структурами (ГАИ или КГБ) вплоть до середины 90–х гг. прошлого века. Было собрано несколько образцов седанов “Волга” с моторами ВАЗ, которые являются объектами коллекционирования.

Mazda RX 8

В производственную гамму японского производителя входили несколько спортивных купе с РПД. Например, Mazda RX7, представленная в 1978 г., оснащалась 105–сильным мотором модели 12А.Затем компании удалось усовершенствовать роторный движок, доведя мощность до 115 л. с. для атмосферной версии и до 265 л. с. для турбинной модификации. В 2003 г. дебютировало купе Мазда RX8 с 1,3–литровым мотором мощностью от 192 до 250 л. с. Модель РХ8 пережила рестайлинг и продержалась на конвейере до 2012 г.

На автомобилях Mazda RX–8 с двухсекционным роторным мотором Renesis применялись механические и автоматические коробки передач. Производитель постоянно анализировал плюсы и минусы схемы Ванкеля, но агрегат потреблял много топлива и не соответствовал ужесточавшимся экологическим требованиям. Конструкторам компании не удалось изобрести улучшенную версию РПД, по состоянию на 2021 г. производитель Mazda не устанавливает роторные двигатели на свою продукцию.

Mazda Cosmo Sport

В 1967 г. появилось небольшое купе Cosmo Sport с роторным агрегатом Ванкеля, изготовленным компанией NSU. Поскольку при работе РПД отсутствуют вибрации, то автомобиль позиционировался как комфортный и динамичный транспорт.

Небольшой рабочий объем положительно влиял на транспортный налог, но небольшой ресурс и сложности при ремонте ДВС ограничивали продажи. Поэтому производитель выпустил на рынок модификацию с поршневым силовым агрегатом. Последние роторные автомобили под обозначением Eunos Cosmo были переданы заказчикам в 1995 г. Особенностью модели Eunos Cosmo стало применение 3–секционного двигателя 20B–REW с двойным наддувом, развивавшего до 300 л. с. при рабочем объеме всего 1962 см³. На прямой автомобиль легко разгонялся до 255 км/ч.

Mazda Parkway Rotary 26

В производственную гамму японского концерна входил автобус с РПД, базирующийся на платформе Titan, техника собиралась с 1972 по 1997 г. На тот момент Mazda выпускала двухроторные двигатели, которые стали использоваться на одной из модификаций Parkway для внутреннего рынка Японии. Автобусы развивали максимальную скорость около 40 км/ч и оснащались гидравлической муфтой в трансмиссии, повышавшей плавность хода. Для внешних рынков поставлялись машины с поршневыми двигателями, лицензионное производство модели Combi велось на заводах KIA.

Mercedes C111

В конце 60–х гг. прошлого столетия были собраны несколько прототипов Mercedes C111, на которых отрабатывались различные технологические решения. Машина оснащалась роторным мотором с 4 секциями, который развивал 350 л. с. и позволял разогнать купе с кузовом из стекловолокна до 300 км/ч. Существовал образец с упрощенным мотором Ванкеля из 3 секций, снабженным системой прямого впрыска бензина. В 1976 г. немецкий производитель перевел ресурсы на разработку дизельных двигателей и отказался от дальнейшего использования роторно–поршневых моторов.

ВАЗ–2109–90

В пятерку автомобилей с РПД попал и отечественный хэтчбэк ВАЗ–2109 (было выпущено несколько десятков седанов ВАЗ–21099 с такой силовой установкой). Волжский автозавод начал разработку роторно–поршневого агрегата для машин с передним приводом в середине 80–х гг. прошлого века. В конструкции мотора ВАЗ–415 используются наработки от версии двигателя для классических “Жигулей”. Мощность агрегата варьировалась в пределах от 140 до 250 л. с., а скорость машины превышала 200 км/ч. В 2004 г. подразделение ВАЗ, разрабатывавшее РПД, упразднили.

Более новые модели авто

На 2021 г. роторные моторы не используются на серийных автомобилях. Завод ВАЗ перешел под контроль альянса Renault–Nissan и сконцентрировался на производстве бюджетных автомобилей с классическими силовыми установками. Периодически появляются публикации, что компания Мазда усовершенствует двигатель и представит новое поколение машин с гибридной установкой. В конце 2020 г. представители Mazda заявили о разработке кроссовера MX–30, который получит роторный двигатель в дополнение к электрическому, но не озвучили дату начала производства.

Оцените статью
( Пока оценок нет )
Добавить комментарий